|
|
|
PROBABILIDAD
La probabilidad proporciona un medio para expresar matemáticamente el grado de seguridad o duda de un suceso al azar.
CLASIFICACION DE LOS NUMEROS
Números naturales
Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal).
El conjunto de los números naturales está formado por:
N= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

Números enteros
Los números enteros son del tipo:
= {...−5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5 ...}
>

Nos permiten expresar: el dinero adeudado, la temperatura bajo cero, las profundidades con respecto al nivel del mar, etc.
Números racionales
Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero.

Los números decimales (decimal exacto, periódico puro y periódico mixto) son números racionales; pero los números decimales ilimitados no.
Números irracionales
Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción.
El número irracional más conocido es , que se define como la relación entre la longitud de la circunferencia y su diámetro.
= 3.141592653589...
Otros números irracionales son:
El número e aparece en procesos de crecimiento, en la desintegración radiactiva, en la fórmula de la catenaria, que es la curva que podemos apreciar en los tendidos eléctricos.
e = 2.718281828459...
El número áureo, , utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.
Números reales
El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por R .
Con los números reales podemos realizar todas las operaciones, excepto la radicación de índice par y radicando negativo y la división por cero.
La recta real
A todo número real le corresponde un punto de la recta y a todo punto de la recta un número real.
Números imaginarios
Un número imaginario se denota por bi, donde :
b es un número real
i es la unidad imaginaria:
Los números imaginarios permiten calcular raíces con índice par y radicando negativo.
x2 + 9 = 0

Números complejos
Un número complejo en forma binómica es a + bi.
El número a es la parte real del número complejo.
El número b es la parte imaginaria del número complejo.
Si b = 0 el número complejo se reduce a un número real, ya que a + 0i = a.
Si a = 0 el número complejo se reduce a bi, y se dice que es un número imaginario puro.
El conjunto de los números complejos se designa por .

FUNCION DE DENSIDAD
En teoría de la probabilidad, la función de densidad de probabilidad, función de densidad, o, simplemente, densidad de una variable aleatoria continua es una función, usualmente denominada f(x) que describe la densidad de la probabilidad en cada punto del espacio de tal manera que la probabilidad de que la variable aleatoria tome un valor dentro de un determinado conjunto sea la integral de la función de densidad sobre dicho conjunto.
Una función de densidad de probabilidad (FDP) es una función matemática que caracteriza el comportamiento probable de una población. Es una función f(x) que especifica la posibilidad relativa de que una variable aleatoria continua X tome un valor cercano a x, y se define como la probabilidad de que X tome un valor entre x y x+dx, dividido por dx cuando dx es un número infinitesimalmente pequeño. La mayoría de las funciones de densidad de probabilidad requieren uno o más parámetros para especificarlas totalmente.
La probabilidad de que una variable aleatoria continua X esté ubicada entre los valores a y b está dada por el intervalo de la FDP, f(x), comprendido en el rango entre a y b. ≤ < = ∫ a b Pr(a x b) f (x)dx La FDP es la derivada (cuando existe) de la función de distribución: f x dF x dx ( ) = ( ) En situaciones prácticas, la FDP utilizada se elige entre un número relativamente pequeño de FDP comunes, y la labor estadística principal consiste en estimar sus parámetros.
FORMULA:

VARIANZA
En teoría de probabilidad, la varianza o coeficiente de variación (que suele representarse como σ2) de una variable aleatoria es una medida de su dispersión definida como la esperanza del cuadrado de la desviación de dicha variable respecto a su media.
Está medida en unidades distintas de las de la variable. Por ejemplo, si la variable mide una distancia en metros, la varianza se expresa en metros al cuadrado. La desviación estándar, la raíz cuadrada de la varianza, es una medida de dispersión alternativa expresada en las mismas unidades.
Hay que tener en cuenta que la varianza puede verse muy influida por los valores atípicos y se desaconseja su uso cuando las distribuciones de las variables aleatorias tienen colas pesadas. En tales casos se recomienda el uso de otras medidas de dispersión más robustas.La varianza representa la media aritmética de las desviaciones con respecto a la media que son elevadas al cuadrado.
Si atendemos a la colección completa de datos (la población en su totalidad) obtenemos la varianza poblacional; y si por el contrario prestamos atención sólo a una muestra de la población, obtenemos en su lugar la varianza muestral
FORMULA:
Observaciones sobre la varianza
1 La varianza, al igual que la media, es un índice muy sensible a las puntuaciones extremas.
2 En los casos que no se pueda hallar la media tampoco será posible hallar la varianza.
3 La varianza no viene expresada en las mismas unidades que los datos, ya que las desviaciones están elevadas al cuadrado.
MEDIA
La media o valor medio de una distribución de probabilidad se define por:

En estas dos fórmulas f(x) es la función de probabilidad y la función densidad de probabilidad respectivamente de la variable aleatoria X en consideración.
Conviene mencionar que la media se conoce como esperanza matemática de X o, brevemente, esperanza de X, y se representa por E(X)
FORMULA:

DESVIACION ESTANDAR
La desviación estándar o desviación típica (σ) es una medida de centralización o dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva.
Se define como la raíz cuadrada de la varianza. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.
Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que representan los datos en su distribución respecto de la media aritmética de dicha distribución, con objeto de tener una visión de los mismos más acorde con la realidad al momento de describirlos e interpretarlos para la toma de decisiones.
FORMULA:
EJEMPLO (MEDIA, VARIANZA Y DESVIACIÓN ESTÁNDAR)
Tú y tus amigos habéis medido las alturas de vuestros perros (en milímetros):
Las alturas (de los hombros) son: 600mm, 470mm, 170mm, 430mm y 300mm.
Calcula la media, la varianza y la desviación estándar.
Respuesta:
así que la altura media es 394 mm. Vamos a dibujar esto en el gráfico:
Ahora calculamos la diferencia de cada altura con la media:
Para calcular la varianza, toma cada diferencia, elévala al cuadrado, y haz la media:
Así que la varianza es 21,704.
Y la desviación estándar es la raíz de la varianza, así que:
Desviación estándar: σ = √21,704 = 147
Y lo bueno de la desviación estándar es que es útil: ahora veremos qué alturas están a distancia menos de la desviación estándar (147mm) de la media:
Así que usando la desviación estándar tenemos una manera "estándar" de saber qué es normal, o extra grande o extra pequeño.
proximamnete graficas
|
|
|
|
|
|
|
Hoy habia 1 visitantes (4 clics a subpáginas) ¡Aqui en esta página! |
|
|
|
|
|
|
|